invoked cos ¢ (t) would be replaced by cos¢ (£) =1 and
sin ¢ (t) == ¢ (£). On the other hand, in order to describe
the statistics of

l T
Y:?l cos ¢ (1) dt
1 /7
gl_ﬁ[, ¢ (t) dt

it has been necessary assume that ¢ (f) is gaussian. In
principle, however, this assumption is not at all restric-
tive since the variance of the actual ¢ process at work
in the loop can be substituted into the probability distri-
bution fy(y). Thus the nonlinear effects of the loop are
taken into account.

Figures 16 and 17 illustrate the performance of a binary
phase-shift-keyed communication system when ¢ (¢) varies
over the symbol interval. The signal-to-noise ratio
R = ST,/N, has been set such that the error probability
of the system would be 102 (Fig. 16) and 10-° (Fig. 17)
in a perfectly synchronized system. For values of 4=8§=5
the results check, for all practical purposes, with those
given previously (Ref. 1) where it is assumed that cos ¢
is essentially constant over the symbol interval. For
8 < 4 the results presented here begin to deviate appre-
ciably from those where cos ¢ is assumed constant; hence,
the model introduced here will be useful in designing
and testing of phase-coherent systems which operate with
8 < 4, the low-rate end of the region of 8.
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G. Communications Systems Development:
Efficiency of Noisy Reference Detection,
R. C. Tausworthe

1. Introduction

Lindsey (Ref. 1) has published results which, for a
given modulation index, relate the observed signal-to-
noise ratios (SNR) to equivalent signal losses caused by
the noisy demodulation process. Recent measurements of
the performance of the 8%-bits/s Mariner Mars 1969
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engineering telemetry instituted a reevaluation of these
analyses. The following report is a tabulation of the
method for determining the demodulation efficiency as a
function of loop phase error. Performance is then related
to these efficiencies through the modulation index. This
method was chosen because of the flexibility it affords
when many indices, bandwidths, etc., are being con-
sidered.

2. Efficiency Equations

The output of a coherent amplitude detector is a process
of the form (Fig. 18)

z(t) = Pm(t) g (¢) + n () (1

in which n (f) is wide-band noise normalized to have the
same two-sided spectral density N, = N, /2, as the input
noise; P = A” is the rms detected sideband power; g (¢)
is the detector phase characteristic, normalized so that
g(0) =1; and m () is the detected modulation process,
normalized so that E (m?(¢)) = 1. The modulation wave-
form we shall assume is one of M messages {my ()}, for
0=t <T.

COHERENT
AMPLITUDE
DETECTOR

3

e QUTPUT, (1)

INPUT, x(t) »

REFERENCE, v(1)

PHASE~
- LOCKED
LOOP

Fig. 18. Coherent detection by loop-derived
reference

The process z{(t) is the input to a set of correlators,
whose outputs at the end of a T-sec message are

w=7 [ mOmOGOaEENT) @

)

N (T) then is a gaussian random variable with variance

N,
o3 = T (3)

We shall also assume that the phase-error process is
derived from a phase-locked loop tracking the carrier
or subcarrier. The loop bandwidth will be denoted wy,
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and the phase-error density p(¢). The integral term of
Eq. (2) can be written as a mean value plus a variational
term

in terms of the normalized cross-correlation 7. between
the incoming message m(f) and the kth stored one,
my (t), where u = E [g(4)], the v are random variables
which depend on the value of k,and v=_(y,, - - - s ¥m)
possesses some distribution p(v). The actual overall
probability of error is the average conditional error prob-
ability

;Vm) dVl ctt de

(3)

PE :fPr{error]vl, o ,Vm]p<vl’ o

The difficulty in specifying the characteristics of
P(vi, - ,vw) lead to approximations for Eq. (5).

First, if the loop response is considerably more rapid
than the integration time T (ie, 8 =2/w, T << 1) then
the correlator output tends to the average

v =0 (6)

in which case the outputs appear all to have an equiva-
lent constant factor E [g (¢)] multiplying the signal am-
plitude A. Performance is then the same as it would be
if the signal power were reduced by the factor E2[g(4)].
The error rate will it the usual maximum likelihood
theory, giving rise to a probability of error as a function
of the matched filter SNR parameter p,;:

=y Bl =RE )] @)

in which R = PT/N, is the undegraded value of p,;. In
this case, it is easy to see that the detector efficiency 4
is merely

70 = E*[g(¢)] = y* 8)

A second approximation can be made when the loop
is very sluggish with respect to the message (ie.,

=2/w;T >>1). Then, over the interval (0,7), the
phase error is nearly constant (but randomly distributed
according to p(¢)). In this case, the correlator outputs
are very nearly

W = Ancg(¢) + N(T) )
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so that the averaged error probability yields the overall
error rate

Py (R%) = [Py (R¥% g (3)|4) p (¢) dp (10)

The degradation is then clearly

1 =5 (B [Ps (R)]): (1)

Because of the convexity of the function Pr[E [v], it fol-
lows that the actual efficiency is bounded by Egs. (8)
and (11):

oo <= 15 =1 (12)

3. Error Probability

Since Eq. (11) requires it, let us consider the error
probability function. For no coding and antipodal binary
signals, the error rate is

1
P, = Bl erfc (R)% (13)

For orthogonal, equi-energy signals, the error rate is

1 +00
Py = W/ exp (—42/2)

~00

1 DL(2R) % M-
X [W/ exp (—v?/2) dv:I dy

—e0

M — %
~ et (g) : (14)

As a function of R, biorthogonal codes behave much the
same (Ref. 2) as Eq. (14) indicates. Thus, for the three
cases (no coding, orthogonal, biorthogonal) we have

erfc (AR, )%

Py (R%) =~ Py (RY) orfo (\Ro)%

(15)

for any values R, and R, of R. The coefficient A relates
to the coding:

1, uncoded

;? s coded (orthogonal /biorthogonal) (16)
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We can set R% = R'% and R = R%g (¢), above, to eval-
uate Eq. (10):

= Pe(R%) [~

P (R%) = erfc (R)% | erfc (AR)% g ($)) p (¢) d¢

(7

But the same error rate would occur if the value of R
were He, and no degradation were allowed:

Pz (R%)

P l/—(l — V T e
PE’ (H ) PE (Be'r)}) erfc ()\R)%

erfe (AR.,)% (18)

It is then clear that

Reo = i‘{erf‘f‘ [ / "erfc (WR)¥ g (4)) p (4) drb]}z
’ (19)

and, correspondingly, that

7o =5 | ot [ [ “erfe (ARPs g () p (6) dqs]}z
B (20)

Thus, it remains only to evaluate Egs. (8) and (20) for
given g(¢) and p (¢) to obtain limits on zs.

4. Carrier-Exiraction Degradation

For the carrier-extraction process the detector char-
acteristic is

g(¢) = cos¢ (21)

and the phase-error distribution, based on the first-order
loop theory, is approximately (Ref. 3)

exp (pcos 9)
91, (p) @2)

pe) =
in terms of the loop equivalent SNR (Ref. 4)

P~ Naw,T

@3

——

JPL SPACE PROGRAMS SUMMARY 37-54, VOL. 1l

Based on this p, a certain loop phase error ¢? is present
in the loop:

T 4 NN L)
=yt 2 : o
n=1

~— asp—> o0 - (24)

It also follows that the degradation for 8 << 1 is

The value for 7, has been obtained by numerical integra-
tion, and appears along with the 5, of Eq. (25) in Fig. 19,
cross-plotted as a function of the loop error. It may be
noted that when ¢® is small, the two bounds converge
approximately to the gaussian-phase-error result

1
1**170~;~0'2~1—6Xp(—a2) (26)

But as degradation becomes an appreciable percent, the
two separate and depend not only on o2, but on AR as
well. Because of the increasing steepness of Py with AR,
the degradation for 8 >>1 becomes more drastic as
AR increases. The degradation for 8 << <C 1 is, however,
independent of AR.

5. Subcarrier-Loop Degradation

Assuming that the subcarrier is a square wave, the
detector characteristic becomes triangular:

for| | == @7)

g =1- 24|, 5

The approximate loop error density (based on a first-order
loop) is again related (SPS 37-31, Vol. IV, pp. 311-325)
to the loop equivalent SNR by

—éexp[—%g-qs?:], for [¢|==/2
plg) =
1 1 2{¢p — =)? 24_32
TPl o ———’—‘-;;——-)], /2=
7/ e \* o \% by
C = —( o) {erf (-é-) + eP h(—i) } (28)
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Fig. 19. Loop-derived reference degradation bounds for carrier tracking loop

where the imaginary error function

9 z
h(x) = T—%’ et dt
“ 1}

2 X2
T 2 :n!(2n+1)

n=0

The phase-error variance is then

and the low-rate efficien

— 4 (.2ﬁ>%e~p/2 (1 — e—p/z)}
o

obtained as

() e [(2)]
() e [(2)

xt{l
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%
]

(1 — errz)2

G &) T[T

(29)

@) el )]

(30)

}

¢y can be straightforwardly

(31)

Again, the values for 7. have been obtained by numerical
integration, and the two different behaviors plotted in
Fig. 20 for comparison. As was evident in the previous
case as well, the two degradations at low o behave like

8/2 2 8/2
Mo = [1 - (‘%) a] ~1—2 (g) o (32)
T ™
as would be predicted by a gaussian ¢-process theory.

6. Interpolation Between 70 and 5,

For a given normalized code-word rate § = 2/w,T, the
actual efficiency 45 lies between 70 and y,,. To compute
75 exactly is an extremely difficult task, since the statistics
of ¢, required by Eq. (4) are unknown. What we shall
develop here is an interpolation formula for 75, rather
than a direct evaluation of the efficiency. One very good
approximation of the error probability in the vicinity of
R, is obtained by a Taylor expansion of In [Pz (R%)]:

Py (R%) = Py (RY) e ®o-r0 (33)
for two comparative values R, and R, of R = PT/N.,, for
both no-coding and orthogonal /biorthogonal coding,
according to the value of . We take R, to be the value

R, = Ru* = RE2[g(¢)] (34)
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Fig. 20. Loop-derived reference degradation bounds for subcarrier-tone-tracking loop

corresponding to 7,, and take R, to be the apparent SNR
corresponding to the correct word in Eq. (4):

R, =R(p+v) (35)

Then we can equate the observed error probability as
having occurred with an equivalent value of R = R,,,
with no reference phase error:

Py (Rlég) :/PE(R?!v)p(v)dv

=Py (R%)/exp{ — AR,

G o w

The form of Py displayed in Eq. (33) then provides

AR~ R) =1In f exp {— AR, [(i)z + 2(%)]}79 (v) dv

AR (o — 76) = ln/{l — AR [(;) " 2(?)]
e (DASGIRES
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=In {1 — AR, (2>2 +2AQR§(U_Z>2 4 .. 1
i “ f

:(%>ZMM33—ARJ+-'- (37)

When of is small, the first term will dominate the be-
havior of Eq. (37). Hence, as a result, we see that

’7""”‘3z("”> =a (38)

Bo 7 N Ov, 0

in which o ,, is the variance of v as § — . Hence, the
interpolation formula we seek is

76 = (1 — @) no + e (39)

and is valid whenever Eq. (37) is dominated by its first
term.

The parameter a defined by Eq. (38) involves only the
expectation of the square of

v=%£ﬁamm~ngnﬂ (40)
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which is given straightforwardly by (Ref. 5)
/8 dx
@ =0 [ (1= 5) Ry (/1) = Ry (o) s
o 2
(41)

The asymptotic values of o2 at very small and very large 8
then verify our previous intuitive claim:

5 [ [Rocoy (/1) — Rycoy ()] dx, s3>0

oL = o
a3, as 8-> oo
(42)

It thus remains only to evaluate o2 at a particular value
of 8. The ratio of the two variances o2 and of then give
the parameter a. But because the loop is nonlinear,
Ry, {7) is not known, although there are several approxi-
mations available for calculation of Ry (). We can model
¢ (1) as a gaussian process having the same variance and
bandwidth as the ¢-process and thereby evaluate the
autocorrelation of g(¢) in terms of that of ¢ {z) by Price’s
Theorem (Ref. 6). For example, if g(¢) = cos ¢, then

Reas (v) = Reoeg (00) = 267 sink? (% Ry m)

while, if g (¢) is the triangular function present in square-
wave subcarrier extraction, then

Rerieoy (1) = Ruriepy (0) =
(:9‘—)3 [ Ry (<) sin** (Ry (+)) sin" (1_1%%))

+ (o — R (x)) — oz] (44)

Further, we can model the correlation function of ¢ by
the simple first-order loop result

Ry (v) = o} exp (—2w, |+]) (45)
and thereby evaluate the parameter a.
At best, the evaluation of a requires numerical inte-

gration. of o} is small in the carrier loop case, however,
the approximation in Eq. (43) can be used to give

278 Sx
a{carrier loop) = § / (1 — —f~2-> e dx

= g [1 — %{1 — e‘s/"‘)] (46)

and is independent of ¢3. This a is plotted in Fig. 21.

1 0 R 43 The numerically integrated, more exact value at o3 =1
~79¢ 3 () (43) is almost indistinguishable from Eq. (46).
1.0
////

0.8 /
o //
5 SUBCARRIER LOOP
Z 0.6 ,//
2 CARRIER-TONE 1 OOP v
Z
o
<
S 0.4 7
: /

0.2 =

LA
/
//
PR |
0
107! 2 4 s 10° 2 4 6 10! 2 4 6 107
8 = Z/WLT

Fig. 21. Interpolation parameter a for sine wave (carrier tone) and square wave (subcarrier tone)
loops as a function of the normalized data word rate
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In the triangular subcarrier case, ¢ reduces to the

integral
3 #/8 3
— 2£ (1 - —:) [esin (e™®)

+ (1 — e2)% — 1] dx 47

a (subcarrier) = -

which is also independent of ¢%. The variation of a with
3 is depicted also in Fig. 21. The approximate expression

, 0.09135 8 + 52
a (subcarrier loop) = 11 337183 + 52 (48)

provides a simple formula for amazingly accurate results.

7. Conclusions

The efficiency of a coherent amplitude detector lies
somewhere between limits set by two extreme theories,
depending on the value of § = 2/w,T. In the discussion
we have considered (by assumption of the form p(¢)
only) the effects of wide-band input noise. However, if
there were other processes causing phase error, such as
loop voltage-controlled oscillator noise, detection insta-
bilities, etc., they can be considered as an equivalent
phase-error term to be included in p(¢).

As long as the loop SNR, p, is greater than 10, p (¢) is
very nearly gaussian, and a normal density can be sub-
stituted for p (), with the other instabilities reflected in
the value of o2
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1. Introduction

In 1953 Davenport (Ref. 1) published a now-classic
paper which showed that at very large values, the asymp-
totic output signal-to-noise ratio {SNR) of a limiter is
twice its input SNR. Because of this, it was supposed
that the same improvement ultimately should be evident
in the performance of a phase-locked loop tracking the
limiter output. In fact, the author (Ref. 2) used this result
(exroneously, but subtly so) to derive a limiter perform-
ance factor I. Recently, however, G. D. Forney (Ref. 3)
has presented a simple argument to show that the asymp-
totic factor of 2 is not realized in loop performance,
although it is indeed present in output SNR. In this
article, the author extends the asymptotic result to rede-
rive the equivalent limiter performance factor.

2. Loop Theory and Noise Components

We shall assume (Fig. 22) that a loop has incident a
sinusoid in wide-band noise, and we shall express this
process in the form (Ref. 4)

() = a 2%sin (odt + 0) + ng (2) 2% sin (et -+ )

”~
McGraw-Hill Book Co., Inc., New York, 1966. + 1, (2) 2% cos (wet + ) (1)
INPUT ————l  BAND-PASS L ier ouTRUT L?‘S;ER
ot = AVZ sin (wof + e) ) = oV 2sin (wot + 9) !

+ ns(f)ﬁ sin (uor +8 )
+ nc(f)ﬁ <os {wof + 8)

+n \/Esin (wo\‘ + é\)

#n V2 sin (mof + b‘) VCO OUTPUT

Q
VCO

vi{i) = K\/E cos (u)ot + é\)

Fig. 22. The bandpass limiter phase-locked loop
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